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ABSTRACT

Peter Gorsevski, Advisor

The purpose of this study was to detect shallow landslides using hillshade maps derived
from Light Detection and Ranging (LiDAR)-based Digital Elevation Model (DEM) and
validated by field inventory. The landslide susceptibility mapping used an Artificial Neural
Network (ANN) approach and back propagation method that was tested in the northern portion
of the Cuyahoga Valley National Park (CVNP) located in Northeast Ohio. The relationship
between landslides and different predictor attributes extracted from the LiDAR-based-DEM such
as slope, profile and plan curvatures, upslope drainage area, annual solar radiation, and wetness
index was evaluated using a Geographic Information System (GIS) based investigation. The
approach presented in this thesis required a training study area for the development of the
susceptibility model and a validation study area to test the model. The results from the validation
showed that within the very high susceptibility class, a total of 42 % of known landslides that
were associated with 1.6% of total area were correctly predicted. On the other hand, the very low
susceptibility class that represented 82 % of the total area was associated with 1 % of correctly
predicted landslides. The results suggest that the majority of the known landslides occur within a
small portion of the study area, which is consistent with field investigation and other studies.
Sample probabilistic maps of landslide susceptibility potential and other products from this
approach are summarized and presented for visualization which is intended to help park officials

in effective management and planning.



il

This is dedicated to the loving memory of my mother, who has inspired me every day of my life.
To my father who convince me to pursue geology, and my loving family who has supported me
throughout this project. Lastly to my loving wife Sarah, who encouraged, supported, and

sacrificed to make this project possible. I cannot truly thank you enough.



v
ACKNOWLEDGMENTS

Above all, I would like to thank my advisor, Dr. Peter Gorsevski, for his advice,
persistence, dedication to me as an individual and as his student. I thank him for instilling in me
that new technology should not deter us, but inspire us to accomplish new and exciting
discoveries.

I want to thank Dr. Charles Onasch for enlightening me to the true power of investigating
landslides and his advice to embark on this research. I wish to express my gratitude for our
meetings, which provided different perspectives that furthered this research. Additionally, I
would like to thank Dr. Xinyue Ye for his commitment and involvement to this research.

I am very grateful to Dr. Robert Vincent for the opportunity to work with the NOAA
Lake Erie Water Quality Research Project as well as providing me with a volunteer opportunity
within the Rotary International water exploration projects. These experiences have enabled me to
see the world in a different way and I truly thank him.

I would like to thank Bill Butcher for his computer help which has truly transformed me
within this field. I am also indebted to Gail Nader for her editorial advice within this project.

Finally, I would like to thank all my fellow graduate students and friends through which

has made my graduate experience extraordinary.



TABLE OF CONTENTS

L. INTRODUCTION ...cocoiiiiiiiiiiiiiiiiciceeeeeee et

2. MODELING APPROACH.........cociiiiiiiiiiiiiiceteeece e

2.1 Extracting Features from LIDAR.........cc.coooviiiiiiiiiiieeeecee e

2.2 Artificial Neural Networks MOdEl.......coovvviviiiiiiiiiiiiieiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeens

3. MATERIAL AND METHODS .......ccoiiiiiiiiiiieeceece et

3.1 STUAY ATCA .ttt ettt ettt ettt e b e e bt e abeebeeenbeennaens

3.2 LiDAR Datasets and DeriVAtIVES .....ccooveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee,

3.3 Landslide MapPing ......ccc.eeouieiieeiiienie ettt ettt ettt ettt ste et saeebeesnneeaee s

3.4 Landslide Validation .........ooooeeiiiiiiieeeeeeeeee e,

3.5 Terrain AtITIDULES ...coeeeeeeeee e,

35,1 SLOPEC ittt
3.5.2 Upslope Drainage AT€a..........cccueerueeeiuienieeiieiieeieeniieeteenieesveeeeeseneene
3.5.3 Profile Curvature.........cocuerienieeieiienieeiesteeeeeee et
3.5.4 Plan CUrVatUre .........coeevierieniieieniienieeeeteste ettt
3.5.5 Annual Solar Radiation..........cccuerieririienienieienienieee e

356 Wetness INAEX c.coooeiiiiiieiieeieee e,

3.6 CIUSLET ANALYSIS ..oviiiiieeiiieiieiie ettt ettt et site et saee et e ebeesbeesaesabeeseesnseenseans

3.7 Artificial Neural Network Model.......coooviviiiiiiiiiiieeeeeeeeeeee,

4. RESULTS

4.1 Exploratory Data Analysis (EDA) .....ccccooiiiiniiiniecceeeeeeee e

4.2 Artificial Neural Network Model RESUILS......coovvveieiieiieeiiiiiieiiieeeeeeeeeeeeeeeeeeeeeeeeen

Page



vi

5. DISCUSSIONS ... st s 26
6. CONCLUSION AND FUTURE WORK .......cccooiiiiiiiiiiiiiiiicieicccece e 29
REFERENCES ... 31
APPENDIX A: FIGURES ..ot 41

APPENDIX B: TABLES ....c.oiiiiii e 53



Figure

10

11

12

vii

LIST OF FIGURES

Page
The Artificial Neural Network Architecture............cooceeverieniiniinienienenieneeieeeee, 41
Location Of STUAY ATCa.......cccuiiiieiiieiieeie ettt ettt eibeeaee s 42
Landslide Inventory Examples from LiDAR-Derived Hillshade Map and Aerial
PROtOZIAPNY ..ot 43
Visual Differences Between LiDAR-Derived Hillshade Map, Aerial Photography,
and Field photOgraphis........cccuiiiiiiiieiiieie ettt 44
Predictor Attributes Derived From LiDAR Data .........ccccoeviivieniniinienecienieeeee 45
Probability Density Function Plots of 14 Topographic Attributes ...............ccceueenee.. 46
Probability Density Function Plots of the Final 6 Topographic Attributes............... 47
ANN Predicted Landslide Susceptibility for Both Study Areas..........ccccecveeviiennnnnn. 48
Zoomed in Image of the ANN Predicted Landslide Susceptibility ............cccueenneeee. 49
A Close-up 3-Dementional View of the Landslide Susceptibility.............ccceuvennennne. 50
Proportion of Correctly Predicted Landslides and Assigned Area to Each
Probability Class in Both the Training and Validation Study Area........c...cccocvueneene. 51

Box Plots of Modeled Landslide Susceptibility Scarps vs. Predictor Attributes

for the Validation Study AT€a.........ccoieiiiiiiiiiiiieiiee e 52



Table

viii

LIST OF TABLES

Page
Landslides Statistics from the Training and Testing Study Areas...........ccceecveeneennee. 53
Clusters Centers for the Training and the Validation Study Areas.........c..cccceeveenee. 54
Effect of Extreme Values of ANN Model Parameters..........ccccoeeevierienecienienennene 55
The Result of the Pearson Correlation Analysis for the Final Six Predictor

ATETIDULES e seee e e seeeeeememnnnnnn 56



1. INTRODUCTION

Landslides are important geomorphic factors that reshape the landscape and transform
local topography by redistributing materials far away from its source. Cruden (1991) defines the
landslides as the “movement of a mass of rock, debris or earth down a slope” caused by the
action of gravity. Sudden and rapid landslide events are often associated with fatalities,
environmental degradation and different types of damage to businesses, buildings, roads, public
utilities, and disruption to people and the environment that cost millions of dollars annually. For
instance, in 1996, damage from a series of rotational slump slides in Hamilton County, Ohio
exceeded $10 million and in 1996-98 landslides and mudslides initiated by massive floods in the
eastern and the southeastern Ohio counties led to repair, rehabilitation, and maintenance costs
which exceeded $34 million (State of Ohio, 2008). Other estimates of landslide losses, such as
from the State of Ohio Hazard Mitigation Plan (SOHMP) crafted in 2008 in response to Federal

Disaster Mitigation Act (DMA), surpass $22 million (State of Ohio, 2008).

In Ohio, the potential susceptibility and incidence of landslides varies across different
regions, but unglaciated southeastern areas along the Ohio River and other major drainages
across the state experience frequent and costly failures (Hansen, 1995). For instance, the City of
Cincinnati has some of the highest cost per capita landslide damages within the United States
due to road failures. Historic figures suggest more than $5 million was spent annually between
1973 and 1978 (Fleming and Taylor, 1980) and $7.2 million annually between 1988 and 1992
(Pohana, 1992). The common landslide types that occur across the state are: rock-falls, earth
flows, and rotational slumps (Hansen, 1995; State of Ohio, 2008). While earth flows are the
most common landslides across the state, in the Cuyahoga River valley between the cities of

Cleveland and Akron rotational slumps occur mostly in the areas where the river has eroded into



the Pleistocene glaciolacustrine deposits leaving unstable valley walls (Nandi and Shakoor,
2009). Such landslides consist of a coherent mass of loosely consolidated materials or weakened
rock layers that move short distances down a slope on a concave-upward surface. Such
landslides produce a scarp at the head of the rupture and a series of step-down blocks, which lead

to lateral spreading at the bottom of the slide called the toe (Varnes, 1978).

There are many factors that control the location and extent of landslides, including
geological (weathered materials, permeability, earthquakes), physical (intense rainfall, steepened
slopes, erosion) and anthropogenic (removal of vegetation, land-use change, population growth,
urbanization, over-steepened upper part of the slope) (State of Ohio, 2008). Nandi and Shakoor
(2006) have shown within the Cuyahoga River valley that steep slopes and erosion, proximity to
streams, and soil types are the main factors in landslides within this region. Understanding such
causes, controlling factors and answering specific questions of spatial and temporal patterns
requires production of detailed landslide inventory, which is the first step in assessing landslide

susceptibility models that can be used for decision and policy-making purposes.

The main purpose of inventory maps is to provide the baseline information on the types
of landslides in the affected area, distribution and displacement caused by one or multiple events,
and assessment of factors that influence the slope failure (Galli et al., 2008). Traditional
inventorying methods include field observations, aerial photo interpretation (API), as well as
using historical records of landslides for locating areas where landslide occur (Jones and
Shakoor, 1989; Nandi and Shakoor, 2006; 2007; 2009). Some of the shortcomings of these
traditional methods include lack of adequate aerial photo resolution required to map small
landslides, obscuration of morphologic features by vegetation, and the time-consuming and

difficult nature of detailed field mapping, especially when done in rugged terrain.



In recent years the airborne-derived products from Light Detection and Ranging (LiDAR)
measurements, such as high-resolution digital elevation models (DEMs) and maps of landslides
obtained from beneath dense vegetation, are becoming increasingly important for producing a
detailed landslide inventory (Van Den Eeckhaut et al., 2006). LiDAR applications include the
construction of DEMs (Liu, 2008), shaded relief maps (Haneberg, 2005), detection of historic
landslides under forested area (Van Den Eeckhaut et al., 2007), creation of topographic contours
(Schulz, 2004), multi-temporal DTM tracking of landsides (Dewitte et al., 2008; McKean and
Roering, 2004; Glenn et al., 2006), hydrological modeling (Liu, 2008 ; Liu et al., 2005;
Hopkinson et al., 2005; Hopkinson and Chasmer, 2008), landform and or soil classification (Liu,
2008; and Anderson and Croft, 2009; Bork and Su, 2007), and understanding fine-scale
landslides patterns (McKean and Roering, 2004; Glenn et al., 2006; Van Den Eeckhaut et al.,
2007). The main advantage of LiDAR is that it allows for robust terrain mapping of landslide

patterns through visual or quantitative analysis.

After the production of detailed landslide inventory maps is completed, landslide
susceptibility mapping is applied to identify potential landslide areas and to determine where or
when landslides are most likely to occur. Often, it is assumed that future landslides can be
predicted by using relationships of past landslides and predisposing factors such as elevation,
slope, plan and profile curvature, flow path length, wetness index, and specific catchment area.
Such factors represent the primary and the secondary derivatives from LiDAR-derived DEMs,
which reduce the high cost of detailed field data collection (Gomez and Kavzoglu, 2005; Lee et
al., 2006; Melchiorre et al., 2008; Pradhan and Lee, 2010). Some of the methods and techniques
which use the knowledge of past landslide events to predict future events include: heuristic

approaches which use expert knowledge and decision rules (Van Westen, 2000; Barredo et al.,



2000; Ruff and Czurda, 2008), statistical models which link factor through spatial correlations
associated with landslide occurrence (Dai et al., 2000; 2002; Lee and Min, 2001; Santacana et al,
2003; Suzen and Doyuran, 2003; Lee et al., 2004; Gorsevski et al., 2006; Nandi and Shakoor,
2006; Van Den Eeckhaut et al., 2006; Godt et al., 2008; Yilmaz and Keskin, 2009), and artificial
intelligence approaches capable of learning complex behaviors with minimal human intervention

and prior knowledge (Yilmaz, 2009; Pradhan et al., 2010; Pradhan and Lee, 2010).

The attractiveness of artificial intelligence techniques such as Artificial Neural Network
(ANN) analysis is that it is independent of the statistical distribution of the data and there is no
need for specific assumptions with the multivariate data distributions. ANN analysis allows for a
non-linear relationship between the landslide and the main susceptibility factors. Some of the
important capabilities of the ANNs models include the learning abilities, generalization and
working with multiple numbers of variables, which are used to extract patterns and detect
complex trends that are difficult to be noticed otherwise. ANNs simulate how the human brain
processes a specific problem through learning algorithms that model knowledge and save this
knowledge in weighted connections. The multi-layer perceptron (MLP) consists of a set of
layers and nodes that are used in the back-propagation (BP) learning algorithm which is the most
widely used algorithm for an ANN model. Such framework contains of an input layer, an output
layer, and one or more hidden layers. The initial network starts with random weights that
represent the inputs and expected outputs, but iterative procedure is used to optimize the weights
and reduce the output errors (Lee et al., 2004; Gomez and Kavzoglu, 2005; Lee and Evangelista,
2006; Prodhan and Lee, 2007; Melchiorre et al., 2008; Nefeslioglu et al., 2008). ANNs have
been used in other landslide susceptibility studies with great success for discerning susceptible

and non susceptible areas (Lee et al., 2006; Yesilnacar and Topal, 2005; Melchiorre et al., 2008).



In this study, the ANN approach uses LiDAR-derived landslide and controlling factors
using a case study of the Cuyahoga Valley National Park (CVNP), where the following three
objectives were set: (1) to assess the landslides through LiDAR-based interpretation and field
inventory; (2) to evaluate sets of different combinations of LiDAR-derived controlling factors in
the development of an predictive ANN model; and (3) to evaluate the ANN predictive model
using independent test datasets in the CVNP. The first objective will show how effective and
proficient LiDAR is in identifying landslides within the hillshade map interpretation. Field
investigations helped in verifying some landslide locations from the LiDAR-derived hillshade
map interpretation inventory. The second objective will help explain the topographic
characteristics of landslides within the study area. The most significant factors that control the
presence of landslides will help in providing the basis for the susceptibility of the region. The
most significant controlling factors will be used as the input variables for the ANN model. The
third objective will help in determining how successful the proposed ANN model is at predicting
landslides within this region by performing the ANN susceptibility model for the validation
study area. These landslide locations predicted by the ANN model will allow park managers to
manage landslide-prone areas and to update existing landslide susceptibility studies to provide a

safe environment for the visitors of the national park.



2. MODELING APPROACH
2.1 Extracting Features from LiDAR

LiDAR is an active remote sensing technique, similar to radar, but uses laser light. The
advantage of this high resolution cutting-edge technology is that can penetrate through vegetative
cover to derive fine-scale features on the ground surface. The data collection and subsequent
processing allows for quantitative measurements of landforms at sub-meter scale and extraction
of hidden features under tree canopy with a high degree of accuracy (Van Den Eeckhaut et al.,
2005, 2007; Razak et al., 2011). Commonly, techniques for feature extraction from LiDAR-
derived DEMs use computed relief images that are interpreted like aerial photographs (Schultz,
2004; Glenn et al., 2006; Ardizzone et al., 2007; Fiorucci et al., 2011) or semi-automated or
automated methods that classify or detect various types of landforms such as hillslope, glacial,
fluvial, and coastal geomorphology (McKean and Roering, 2004; Ioannilli and Paregiani, 2008;
Booth et al., 2009). Typical steps in the extraction of landslides and creation of inventory maps
often is based on products such as LIDAR-derived hillshade, slope, and contour line maps in a

GIS environment.

2.2 Artificial Neural Networks Model

An Artificial Neural Network (ANN) is a computational technique that was inspired by
attempts to model the human central nervous system using human reasoning and problem-
solving abilities (Bain, 1873; James, 1890; McCullock and Pitts, 1943; Werbos, 1975). The
design of this computational technique is to emulate biological neural networks in a similar way
as the human brain learns tasks that are difficult to simulate with other logical and/or analytical
techniques. An ANN differs from other forms of computer intelligence because it is not rule-

based and doesn’t need a predefined knowledge base. ANN is trained to learn associative



patterns to recognize and generalize the relationship between a set of inputs and outputs. A well-
trained ANN in some instances could be highly effective in discerning patterns that are difficult
to detect otherwise. The ANN has been used in a number of applications such as image
processing, pattern recognition, function approximation, optimization, forecasting, data retrieval,
and landslide susceptibility (Egmont-Petersen et al., 2002; Lee et al., 2004; Ermini et al., 2005;

Yesilnacar and Topal, 2005; Kanungo et al., 2006; Melchiorre et al., 2008).

The typical architecture of an ANN model consists of topology, a learning paradigm, and
a learning algorithm. Network topology refers to the organization, the connection of the nodes,
and the flow of data and error information between the layers, while the learning paradigm often
handles two broad categories of supervised and unsupervised network learning using different
learning algorithms. The multilayered topology is the most common algorithm, where all
processing units or the nodes are organized in three essential layers: input, hidden, and output.
The input layer is used to pass predictive attribute data forward to the hidden layer which is
connected to an output layer. Within this framework, the produced output is recursively
compared with the desired output until error signal is minimized and computed output resembles

the desired output. Figure 1 shows the architecture of the ANN model used within this study.

The most common feed-forward neural networks are constructed by multilayer
perceptrons (MLP) and radial basis functions that use the back propagation (BP) algorithm
(Lippman, 1987). In back propagation neural networks the data passes forward from input layers
to output layers via the hidden layer(s). The initial output is produced for the input data and
randomly assigned weights. The resulting outcome is compared with the desired output and

error discrepancies are propagated backward through the network from the output to the input



nodes. This is an iterative backward propagation intended to adjust the synaptic strength of

weights to ensure similarity between the computed and desired output.



3. MATERIAL AND METHODS
3.1 Study Area

The study area shown in Figure 2 is located within the CVNP, in northeast Ohio located
along the lower Cuyahoga River, which is one of the most landslide-prone regions of the
watershed (Nandi and Shakoor, 2009). According to the National Park Service, the park covers
133.6 km” with altitudes varying from 305 to 381 m above sea level. The annual precipitation in
the area ranges from 927 to 1,027 mm, with changes driven by localized ‘lake effect’
precipitation. The maximum discharge for the Cuyahoga River occurs between March and May
when snow melt runoff and rainfall amounts are the highest. The Cuyahoga River flows 35.4 km
through the National Park and the drainage network is well developed with a significant surface

runoff.

The Cuyahoga River Valley is a part of the glaciated Allegheny Plateau with a geologic
history dominated by two significant periods of deposition (White, 1982, 1984; Ford, 1987,
Nandi, 2007). The first period is from the Paleozoic time when the bedrock of the region was
deposited. The bedrock consists of late Devonian, Mississippian, and Pennsylvanian siliciclastic
sedimentary rocks. The late Devonian units were deposited within the shallow sea west of the
Catskill Delta of Pennsylvanian; whereas the Pennsylvanian deposits resulted from a relative sea
level rise, which deposited deltaic sediments as well as the formation of non-marine limestone,
shale and coal deposits (Szabo, 1986; Nandi, 2007). There is a 270 million year unconformity
(from Triassic to the Pliocene) present in between the two deposition periods which represents
the sub aerial extent of Ohio during this time. The second period is from the Pleistocene time
where overland glaciers deposited glacial sediments composed of clay, silt, sand, gravel, and

boulders (Miller, 1983). Some of the characteristics of glacial sediments include extensive silt
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and clay deposits of lacustrine origin. The Pleistocene deposits of the study area are deeply
incised by fluvial processes that created steep valley walls that accelerate landsliding (Nandi,

2007; Nandi and Shakoor, 2009).

Figure 2 shows the LiDAR-derived hillshade map of the study areas that was divided into
two smaller sections for the analysis: the training area (green outline) used for the prediction of
landslides (18.6 km?) and the test area (blue outline) used for the validation of landslides (20.9
km?). The areas were chosen based on the similarity of the lithology. The training area consists
of 31.15 % Berea Sandstone and Bedford Shale, 68.49% Ohio Shale and 0.36% Maxville
Limestone, while the validation area consists of 30.23% Berea Sandstone and Bedford Shale,
69.2% Ohio Shale and 0.57% Maxville limestone. Because the lithology of the study area was
derived from maps at a scale of 1:500,000 it lacks detail, and the lithology in this study is

represented by similarity in the study units and it was not used in the ANN analysis.

3.2 LiDAR Datasets and Derivatives

The digital elevation model (DEM) is a grid-based three-dimensional representation of
the terrain elevation and is a fundamental element of landslide inventories and spatial
susceptibility analysis (Wilson and Gallant, 2000; Hengl and Reuter, 2009). The DEMs were
constructed using publicly available LiDAR datasets from the Ohio Statewide Imagery Program
(OSIP) (OGRIP, 2006). The OSIP datasets include LiDAR and high resolution imagery which
were acquired in 2006 and 2007. The OSIP color imagery was produced at either 1-foot (0.3048
m) or 6-inch (0.152 m) resolution while the LIDAR dataset were produced with an average laser
pulse spacing of 7 feet (2.1336 m) and with an accuracy of 1 foot (0.3048 m). One of the
products is preprocessed bare-earth LIDAR-derived DEMs that has 2.5 ft (0.762 m) spatial

resolution. The DEMs are available in ArcGIS and ASCII grid format which are organized in
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tiles. The coverage of each tile is approximately an area of 2.3 km”. In the study area the
multiple tile covers were mosaicked to create training and validation DEM grid layers. The
training study area used a total of eight DEMs whereas the validation study area used a total of

nine DEMs.

While the DEM is often the primary derivative from the raw LiDAR data, terrain analysis
using DEMs allow derivation of additional topographic attributes including: shaded relief maps
(hillshading), elevation, slope, aspect, north, curvatures (profile, plan and mean curvatures),
upslope drainage area, anisotropic coefficient of variation, annual solar insolation, sediment
transport index, stream power index, elevation, general landform classification, and wetness
index. Those attributes can be beneficial for both a landslide inventory and spatial prediction of
landslide susceptibility (McKean and Roering, 2004). The effectiveness of LiDAR derived
products, especially shaded relief maps is far more superior in landslides interpretation and
improves landslide inventories compared with traditional aerial photography interpretation
(Figure 3). Thus, the main advantage of LiDAR datasets and derivatives is the visualization of
the terrain through multiple combinations of hillshades and other ancillary data sets and
subsequent terrain analysis which are aimed at understanding landslide processes and

development of susceptibility models.

3.3 Landslide Mapping

LiDAR-derived DEMs were used to identify landslides through high resolution ground
models, such as hillshades, combined with slope maps and draped topographic contours. The
principal dataset used in landslide mapping are the hillshades, which are calculated from DEMs
with varying sun azimuths and sun directions. Such derivatives produce a 3-D pseudo image of

the landscape that creates illumination and shadowing to emphasize and highlight geomorphic
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features, such as landslides. In this study, hillshades were calculated from the DEMs with
varying sun azimuths of 45°, 135°, 270°, and 315°, and a sun angle of 30° above the horizon. In
addition, topographic contours produced at different distance intervals assisted in locating
geomorphologic features, including: changes in slope, hummocky disturbed surfaces, convex and
concave slope areas, midslope terraces, offset drainages, and potential slope changes at the scarp

of a landslide.

The majority of the landslides that occur within the study area are rotational slumps that
contain a main and/or multiple minor concave scarps, body of the slide with steepened sides
occurring towards the toe where displaced material has been collected. Landslides were mapped
as polygons that include all elements of a rotational slide (i.e., scarp, body, and toe). The
interpretation of the mapped polygons relied on the ground-surface morphology characteristics
and 3-D scenes of hillshades and imagery that were visually evaluated for the presence of
landslides by systematic evaluation of areas through panning and zooming of the scenes. This
interpretation procedure was repeated to produce an unbiased landslide inventory map that
included the areas common to the two inventory trails. Within the training study area a total of
212 and 292 landslides where identified, whereas in the testing study area 208 and 297 landslides
were identified within the first and second inventory trial. The final count had a total of 190
landslides, where 83 and 107 were recorded within the training and the validation study areas,
respectively. The total area of landslides within the training and testing study areas are 0.139
km? and 0.168 km? or 0.74 % and 0.803% of the total area respectively. The statistics of the

landslides occurrences are in Table 1.
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3.4 Landslide Validation

The LiDAR-derived landslide inventory was validated by a field investigation. The field
investigation incorporated the use of Global Positioning System (GPS) technology (Geo
Explorer 6000 series Trimble GPS receiver) to travel to the exact location of each selected
landslide. At each location the landslide was authenticated and the boundaries traced and
described. The field investigation validated a total of 100 landslides that were randomly
selected, where 43 and 57 landslides were identified from both the training and testing study

arcas.

The field investigation allowed for the comparison between the boundaries as determined
in the field and those of proposed landslide locations identified within the hillshade map. Figure
4 shows how a given landslide is displayed within hillshade maps, aerial photographs, and field
photographs to demonstrate the features within each dataset. The validation of landslides within
the field compared to landslides present in the LiDAR landslide inventory allows for a generic
accuracy value to be established for the inventory. From this procedure it was determine that the
accuracy of the inventory is 90.7%, 78.9%, and 84% for the training, testing, and combined

study areas respectively.

3.5 Terrain Attributes

The terrain or the predictor attributes were derived from LiDAR OSIP datasets and
include elevation, slope, aspect, north, curvatures (profile, plan and mean curvatures), upslope
drainage area, anisotropic coefficient of variation, annual solar insolation, sediment transport
index, stream power index, elevation, general landform classification, and wetness index.

Through multiple ANN modeling trials using different combinations and quantity of the
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attributes above were narrowed down to the following six: slope, profile and plan curvatures,
upslope drainage area, annual solar radiation, and wetness index (Hengl et al., 2003; Hengl and
Reuter, 2009; Wilson and Gallant, 2000). The distribution of the six predictor attributes can be
visualized in Figure 5 with respect to known landslide locations. A number of different studies
have used the same six attributes and have shown to be significant in modeling landslide
susceptibility (Ventura and Irvin, 2000; Gorsevski et al., 2003; Gorsevski et al., 2006; Gorsevski
and Jankowski, 2008; Regmi et al., 2010a; Regmi et al., 2010b). In this study, those same
predictor attributes were also used as inputs in the ANN susceptibility model. Each predictor
attribute is discussed in detail bellow for a better understanding of the topography within the

study area.

3.5.1 Slope

Slope is defined as the change in the vertical distance divided by the horizontal distance
over a given region. Slope is one of the most important factors in controlling the stresses which
act on the slope materials and determines how fluid will flow overland and within the subsurface.
The amount and type of vegetation, precipitation, and soil water content over a given area are
affected by the slope. Traditionally a high slope angle will result in more landsliding, which is
significant when locating landslides. Within the study areas the slope ranges from 0 to 100%
and the majority of high slope gradients are located within the valley walls which make up

8.65% and 16.09% of the training and testing study areas.

3.5.2 Upslope Drainage Area
The upslope drainage area is also referred to in the literature as the catchment area or
flow accumulation which represents the total area that is upslope and drains in a particular

catchment outlet. According to Hengl and Reuter (2009) catchment area is defined as:
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CA = z A; Equation 1

where A is the amount of runoff generated in each cell and # is the number of upslope cells
within a given watershed. This value is summed for the surrounding cells, » which flow into an
outlet down slope and allows for the total runoff to be calculated. Thus, the surrounding
elevation and slope will contribute to the value for the catchment area. A larger value for
catchment area will be located at lower elevations and slopes. Smaller values for catchment area
will be for higher elevations and slopes (Tarboton, 1997; Hengl and Reuter, 2009). This
parameter will also be used in the calculation of the wetness index. Within the study area the
catchment area has an interquartile range of 25 m”* to 110 m? within landslide-prone areas and 6

m? to 35 m* within the areas not prone to landslides.

3.5.3 Profile Curvature

Profile curvature is the amount of curvature parallel to the direction of the largest slope.
Profile curvature is sometimes referred to as vertical curvature, where the amount of curvature is
calculated directly down the slope. This predictor attribute explains how the fluid will accelerate
or decelerate down a hillside based upon if the slope is concave, convex, or flat. The fluid will
accelerate down a convex slope and decelerate down a concave slope. Overall, convex slopes

will contribute to more erosion due to the acceleration of the fluid as it moves down the hillside.

The values for profile curvature will range from positive to negative, where a positive
value represents a slope that is upwardly convex at the reference pixel and a negative value
represents a slope that is upwardly concave at the reference pixel (Hengl and Reuter, 2009). A

value at or near zero for profile curvature represents a uniform slope. The interquartile range of
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the profile curvature is -8.3 to 0.52 for landslide-prone areas and -8.4 to 0.52 for non-landslide-

prone¢ arcas.

3.5.4 Plan Curvature

Plan curvature represents the amount of curvature perpendicular to the direction of the
largest slope. Plan curvature is sometimes referred to as horizontal curvature, where the
curvature of a slope is calculated tangentially to a contour line. This predictor attribute explains
how a fluid will converge or diverge as it moves down the slope. A concave plan curvature
slope will contribute to more erosion because the fluid is focused and accumulates as it flows

down slope, which erodes more readily compared to a convex plan curvature slope.

The values for plan curvature range from positive to negative, where a positive value
represents a slope that is laterally convex at the reference pixel and a negative value represents a
slope that is laterally concave at a reference pixel. A slope that has a plan curvature at or near
zero will be laterally uniform. The interquartile range of the plan curvature is -2.7 to 1.9 for

landslide-prone areas and -2.68 to 1.9 for the whole study areas.

3.5.5 Annual Solar Radiation

Annual solar radiation represents the average solar radiation that converged at a given
pixel within one year. This also takes into consideration the sun angle and what direction the
solar radiation is arriving from when it comes in contact with the pixel, which is expressed in
Kilowatt hours per square meter (Hengl and Reuter, 2009; Wilson and Gallant, 2000). This
attribute is a secondary terrain attribute and is calculated by taking the product of the aspect and

slope. For this reason aspect was not used within this study.



17

Annual solar radiation is important because the larger amount of solar radiation will
contribute to a higher amount of evaporation from the soil. With a high value for solar radiation
pore space will be available for the rain to accumulate within the soil. Lower solar radiation will
contribute to less available pore spaces when a rain event take places and failure will have a
higher probability to occur since saturated material are weaker due to pore fluid pressure effects.
Furthermore, annual solar radiation controls the amount of vegetation which is present on the
slope. The higher amount of solar radiation a slope receives, the more vegetation will be present

on the slope leading to a more stable slope.

Within the study area there is a variability of the annual solar radiation depending on the
orientation of the slope where the southerly facing slopes received relatively more solar radiation
than the northerly facing slopes. The majority of the landslides occur within an annual solar
radiation range of 50-60 Kilowatt hours per square meter. The level, non-oriented topography
surrounding the valley contains little to no landslides and receives around 70 Kilowatt hours per

square meter of annual solar radiation.

3.5.6 Wetness Index

The wetness index is also recognized as the topographic wetness index (TWI) or as the
compound topographic index (CTI). The wetness index, which is a very important terrain
attribute within landslide susceptibility studies and according to Hengl and Reuter (2009), is

defined as:

TWI =In

tan B Equation 2

where, CA is the catchment area and f is the slope. The natural log within this equation helps

the outcome to fall within a normalized range. The TWI equation assumes that steady state
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conditions occur spatially across the region, where a few assumptions need to be made in order
for this equation to hold true. These assumptions include: the precipitation is constant over the
region, consistent soil type and thickness, as well as no subsurface drainage network occurs
within the region (Wilson and Gallant, 2000). These assumptions allow for both infiltration and

transmissivity of the soil to be neglected within the calculation of TWI.

The values of the TWI are a positive non zero which increases as the catchment area
increases and the slope angle decreases (Hengl and Reuter, 2009). This attribute in the past has
been used to help describe how the topography affected the saturation of the land within a
particular location. An increase in the wetness index increases the potential for landslide (Lee
and Min, 2001; Gorsevski et al., 2006; Hengl and Reuter, 2009). Previous studies have shown
that the higher the TWI values are associated with the landslide deposits compared to lower TWI
values with non-landslide deposits. However, within this study area the interquartile range for

the wetness index is between 4.1 to 5.83 for both landslide- and non-landslide-prone areas.

3.6 Cluster Analysis

Cluster analysis is the process whereby similarities in the data are grouped together (into
smaller classes) so that the data which occurs within the same cluster are more similar to each
other than the data which occurs in different clusters. This classification was used to group the
six predictor attributes within the known landslide areas into three arbitrary chosen clusters to
produce a landslide classification which depicted the main geomorphological elements of a
landslide: the scarp, the body, and toe of the landslide. The classification used cluster centers

with similar range of values for both the training and the testing study area.
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The cluster centers for the six predictor attributes were used to understand similarities
and dissimilarities of the predictor attributes with respect to the different landslide elements. The
same cluster centers were used for both the training and testing study areas, where a direct
comparison can take place for each predictor attribute. The cluster centers correspond to the
average value for a given attribute within a particular class. The individual predictor attributes
can be used to determine the topography of the given area. Knowing this, the data from Table 2
suggest that class C; is most likely to be the toe, C, is most likely to be the body and Cj; is most
likely to be the scarp of a landslide. This determination was made by understanding the
geomorphological characteristics of each element of the landslide. For example, C; has the
steepest slope and C; has the gentlest slope for both training and validation study areas. Cj; also
contains the lowest plan curvature and wetness index of all three classes. From this comparison,
C; represents steep, dry concave areas. C; contains the highest solar radiation and plan and
profile curvature indicating drier convex areas compared to C; and ;. C; contains a high
catchment area, highly negative profile curvature, and moderately high wetness index, which
represents a concave, high soil moisture region. These findings are consistent with all three
elements of a landslide the scarp is the steepest concave part of the landslide; the body is the
concave moderately steep, wet portion of the landslide and lastly; the toe is the convex, flatter

dry region.

3.7 Artificial Neural Network Model

The type of ANN used within this study was a MLP with the BP learning algorithm. The
MLP and BP were used to produce the landslide susceptibility of the study area. The BP
algorithm may be regarded as a hard or soft classifier, but this study focused on the use of soft

classification, to produce an output classification which is the direct result of multiple
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classification maps, where each map is representing one class. The classification maps are
combined together to show the degree of membership for the class being associated with a
landslide. The degree of membership values range from 0 to 1, where the higher the degree of
membership the more likely a landslide would occur within this area. Due to the use of fuzzy

logic within the classification process the data may not always sum to 1.

Also, during the setup of the ANN model, the study area is normally separated into two
similar, but distinct data sets, where a comparison of the model can be made. The two datasets
are represented by the two study areas: the training and testing study areas (Gomez and
Kavzoglu, 2005). As the name applies the training study area is where the model was produced
and trained on and where the weights for the model were developed. The testing study area is
where the developed weights from the training study area were applied to validate the

performance of the model.

There are different parameters which can be changed within the MLP module, these
include: the order or addition of different predictor attributes, the learning rate, momentum
factor, automatic training, dynamic learning rate, root mean square (RMS) error, the amount of
iterations, amount of training and testing pixels so that a ANN model can be produced with the
least amount of error, and the highest accuracy between the training and testing portion of the
model. Table 3 shows the effect that each parameter has on the modeling if the values are not
optimal. From this table it is determined that the values for each parameter can limit the
development, performance, and accuracy of the overall model (Basheer and Hajmeer, 2000).
This was determined from multiple trials of modeling where the accuracy varied between the
implementation of different parameters. For example, the amount of training and testing pixels

per class affects the amount of data used from the given predictor attribute in the classification of
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the study area. Depending upon the size of a given class, all or very little will be used within the

classification and in turn affect the model.

Each parameter affects the model’s ability to classify the data, for this reason there are
certain recommendations for the initial value of each parameter. For instance, the
recommendations for the initial values of the starting learning rate ranges between 0.1 and 0.2.
This range of values will normally allow the training of the model to occur at a susceptible rate,
but depending on the setup of the model as well as the input data, may require the value to occur
outside of this range. The momentum factor also has a recommended range of 0.5-0.6 for initial
modeling phases. This range help prevent oscillations that may occur within the training phase
of the MLP ANN model. The other parameters discussed above contained the default initial

values set by the MLP module and were adjusted accordingly throughout the modeling process.

After multiple trials with different parameters an ANN model was produced which best
classified the training study area. The best model contained the predictor attributes in the
following order: slope, annual solar radiation, upslope drainage area, plan and profile curvature,
and wetness index. It was determined through trial and error that the training and testing pixel

per class should be 500. The other parameters used within this model are described below:

Input layer node: 6
Output layer node: 2
Hidden layers: 1
Hidden layer nodes: 3
Starting learning rate: 0.005

Ending learning rate: 0.0001
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Momentum factor: 0.05
Sigmoid function constant a: 1.0
Number of iterations: 10,000

The acceptable RMS value was set to stop at 0.001, and the number of iterations set at 10,000,
which would be reached before the RMS value. For this reason different iteration values were
examined, but higher values would produce over trained, lower accuracy models. The
significance is that the model contains a low RMS, but that the cutoff RMS for the input data
was set too low to be reached by this model. For this reason the termination iterations was set to
stop modeling and not to overtrain the data. The best results from the ANN simulations yielded
an RMS error of 0.2921 for the training, an RMS error of 0.3016 for the testing, with total
accuracy rate of 87.93% for the final model. The model was further validated in the testing site

using the weights developed in the training site.
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4. RESULTS
4.1 Exploratory Data Analysis (EDA)

The field investigation of the LiDAR-derived landslides was followed by exploratory
data analysis which allowed for each predictor attribute to be explored and analyzed so that a
better understanding of the data can take place for both the landslide-prone areas as well as for
stable areas within the training dataset. First, there were random points produced for the
landslide and non-landslide localities within the training study area, which represented 1.33%
and 0.005 % respectively. Figure 6 shows the univariate EDA of the predictor attributes used to
visualize the distribution or range for each predictor attribute. The graphical representation is in
the form of a probability density function (PDF) plot. The PDFs of each predictor attribute for
landslide and non-landslide-prone areas allowed for a better understanding attribute distribution
and statistical difference between the landslide and non-landslide populations. The EDA
included the following attributes: elevation, slope, aspect, north, curvatures (profile, plan and
mean curvatures), upslope drainage area, anisotropic coefficient of variation, annual solar
insolation, sediment transport index, stream power index, general landform classification, and

wetness index.

The PDFs for the final six attributes used as input variables within the final ANN model
are shown in Figure 7. This distribution and spread between both of these populations can be
observed within the PDF. The distributions are represented by a line, where the solid line within
the figure shows landslide-prone areas, while the dashed line represents the non-landslide-prone
areas. The distribution within the PDF for slope, upslope drainage area, and annual solar
radiation are different with respect to landslide- and non-landslide prone areas. The slope

contains the highest degree of dissimilarity between the two populations, while plan and profile



24

curvature as well as wetness index are very similar. For a more detailed example of the
variability of the distributions take a closer look at the PDF of upslope drainage area; where the
area for non-landslides contains a median value around 15 m?, while the landslide prone areas
contain a mean value of around 40 m>. Whereas, the PDFs of wetness index, plan and profile
curvature shows similar relationship for both landslide- and non-landslide prone areas. For
example, the highest probability value which also represents the median for plan curvature is at

or near 0, for non-landslide and landslide prone areas alike.

Another aspect of EDA was the use of Pearson Correlation analysis. Pearson correlation
analysis is used to determine the correlation between two continuous variables. The values of
this analysis can range from 0 to 1 and from -1 to 0, where a value of 0 represents no correlation
and a value of 1 or -1 represents perfect correlation between the two variables. The Pearson
correlation analysis for the final six attributes in Table 4 shows that the wetness index, slope and

upslope drainage areas are highly correlated.

4.2 Artificial Neural Network Model Results

Figure 8 (a) and (b) shows the predicted or degree of membership of landslide
susceptibility for a given pixel in both the training and validation study areas. The figure
represents a visual representation of the degree of membership of landslide susceptibility for the
study area. The values range from 0 to 1 where blue represents low susceptibility with a value at
or near 0, and red represents high susceptibility with a value at or near 1. From this figure visual
patterns of the susceptibility can be determined where the highest susceptibility regions occur
within the valley sides within the smaller tributaries predominantly on the eastern side of the
study areas. The lowest susceptibility regions occur along the valley top and bottoms where the

slopes are minimal. To better understand which areas were highly susceptible compared to low
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susceptible regions, within the training study area the membership image was overlaid by the
known landslide scarps locations which were derived from the landslide inventory map and
determined by the cluster analysis. An enlarged image of this relationship can be viewed in
Figure 9 (a), where the high susceptibility coincides with the scarp locations within the training
study area. Figure 9 (b) shows the degree of membership for the testing study area and how well

the known landslide scarps related to the high susceptible areas.

The variability of the high susceptible zones can be further explored within Figure 10,
where the susceptibility is shown in a three-dimensional view. Figure 10 shows that the
locations of the high susceptibility zones do not occur along all portions of the hillside, but do
vary on what side of the valley and on the location on the hillside. From this figure it can be
determined that the north, northwest and southwest sides of the valley contain the highest
susceptibility, mostly constricted to the top of the hillside. However on the south and southeast
sides of the valley the hillside is nearly absent of any high susceptibility and only when the
valley migrates towards the southern direction the presence of high susceptibility regions along
the top of the hillside occur within smaller adjacent tributaries. This variability with the
susceptibility along the hillside directly correlates with the landslide scarps within Figure 9,
which helps to determine visually that the ANN model is deciphering the scarps compared to

non-landslide locations.

The classified landslide susceptibility is quantified in Figure 11, where (a) represents the
goodness-of-fit from training and () validation study area. The degree of membership of
landslide susceptibility was divided into five different classes which represent very low to very
high susceptibility. Figure 11 (@) and (b) shows a light and dark gray bar graphs. The light gray

bars represent the percentage of the total area for each membership class. Whereas, the dark
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gray bars represents the percent of correctly predicted landslides within each membership class.
Starting with Figure 11 (a) the very high susceptibility class or 0.8-1.0 correctly predicted 30 %
with only representing 7% of the total area. However, the very low susceptibility class
represented 78% of the total area with only correctly predicting 2% of landslides within the
LiDAR inventory. Like (a), (b) showed augmented results. Within the very high susceptibility
class, the model correctly predicted 42% of known landslides represented 1.6% of total area.
Furthermore, the very low susceptibility class represents 82% of the total area and contained
only 1 percent of correctly predicted landslides. In conclusion, this figure demonstrated the
majority of the known landslides occur within a small percentage of the study areas and the

validation study area predicted more landslides within the high susceptibility class.

Figure 12 shows the relationship of the predictor attributes and the membership classes
for the landslide scarps within the validation study area. This is shown as a series of box plots
for every individual membership class. The box plots show the interquartile range for each
attribute within a specific susceptibility class. The interquartile range shows the range from 25
to 75 % of the data, with the solid black line representing the median value for the predictor
attribute. The main purpose of this figure is to better understand landslide susceptibility
associated with predictor attributes. The relationship of each predictor attribute with respect to

the individual susceptibility classes are described below.

Within the validation study area the slope contains a trend where high susceptibility is
associated with steep slopes and very low susceptibility is associated with gentle slopes. The
steep slopes are produced by the down cutting of the Cuyahoga River creating the valley within
the recent geologic past. Modern stream processes have created steepened slopes along the bank

of the Cuyahoga River and its tributaries. The wetness index contains an opposite trend, where



27

the wettest areas occur within the very low susceptibility class and the relatively drier areas
occurs at the high susceptibility class. This relationship occurs due to the scarps of the landslides
that are located at the steepened slopes where available soil moisture is removed in the down
slope direction concluding a rain event. The upslope drainage area has similar trend to the
wetness index, where the very low susceptibility class contains the relatively higher values and
trends downward towards the very high susceptibility class. However, the annual solar radiation
has a trend where the low susceptibility class contains smaller values, which represents a region
containing less sunlight and more soil moisture. The trend increases towards the direction of the
moderately susceptible class, where more sunlight and less soil moisture occurs at this location.
The trend decreases again towards the high susceptibility class, where more soil moisture occurs
and results in a greater probability of failure to occur in that location. Lastly, both plan and
profile curvatures have very similar values close to zero to slightly negative for all susceptibility

classes.
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5. DISCUSSION

Data collection and data processing are important aspects of this research. The first step
is the production of a hillshade map from processed LiDAR data. The hillshade maps were used
to highlight different sides of the valley so that a landslide could be identified. The majority of
the landslides where identified using sun azimuths of 45° and 315° and sun angle of 30°.
However, the use of only four oriented hillshade maps could have placed an emphasis on a select
number of the landslides present. To improve this, a systematic approach should be taken, where
a hillshade map would be produced for an azimuth of every 10-20°. This will insure that the
majority of landslides are incorporated within the landslide inventory. The field investigation
was used to check the accuracy of the LiDAR landslide inventory map. However, the field
investigation occurred during the peak vegetation time period in July and August, which
hindered the deciphering of landslides in the field. The use of GPS technology was used to help
locate the exact landslide from the inventory map, but the methods used during the first trial of
the field investigation placed a bias on the landslide boundaries. A solution to improve this
problem would be to conduct the field investigation during non-growing season, where obscure

landslide boundaries can be detected in the field.

With further investigation of the close-up three-dimensional landslide susceptibility
image within Figure 10, it can be clearly identified that there is a preferred orientation to the
landslide susceptibility. The landslide susceptibility orientation is based on consistently located
which side of the valley as well as the position along the valley wall. The highest landslide
susceptibility is associated with north, northwest and southwest directed valleys as well as at the
top of the valley walls and adjacent to the bank of the river, where the river processes produced

over-steepened slopes. These preferred orientations are associated with weather pattern
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migration and the location of high percent slope within the region. The position within the
Cuyahoga River Valley provides an exposure of weather patterns from the west and northwest
through the valley, bringing a wide variety of precipitation including lake effect snow patterns
(Nandi and Shakoor, 2009; Goddard, 1998). However, Nandi and Shakoor (2009) showed that
the concentration of landslides with respect to amount of precipitation was found not to be as
significant as the erodability of the soils, which was outside of the scope of this study.
Furthermore, the high susceptibility associated along the rim of the valley is consistent with
Nandi and Shakoor (2007), where the highest percentage of landslides occurred around a 35 © or
70 % slope and these slope values are consistently near the top of the valley wall as well as

adjacent to the erosional banks of the Cuyahoga River and the surrounding tributaries.

The use of LiDAR data provides an exceptional tool for deciphering landslide processes
within the study area and around the world. LiDAR provides incredible benefits to the
investigator compared to API, remote sensing and other landslide detection methods. LiDAR
produces high resolution DEM and hillshade maps, which can be processed to remove vegetation
and manmade objects. LiDAR enables the user to view the earth surface under forested areas
like the Cuyahoga River Valley. LiDAR is also cost efficient with respect to field investigations
in terms of pinpointing landslide locations prior to a field investigation so that a field check can
confirm the presence of a landslide. Furthermore, LIDAR improves landslide inventory maps
where unknown, remote, large, older landslides can be incorporated. Schulz (2007) showed that
four times more landslides were deciphered with the use of LIDAR compared with API and field
investigations alone. Likewise, Van Den Eeckhaut, et al. (2007) showed that the use of experts
analyzed LiDAR derived hillshade maps were equivalent to field investigations. Their study

showed that the use of multiple experts investigating the same study area can produce a high
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quality landslide inventory map, even under forested areas. For these reasons LiDAR was the

ultimate tool for deciphering landslides within the Cuyahoga River Valley.

Although there are numerous benefits LIDAR data provides to decipher landslide
properties there are also some limitations. LiDAR data requires tremendous computer efficiency
and memory which limits the size of study areas. Also the Schulz (2007) study found that the
smallest landslide detected by their LIDAR survey was a little over 20 meters across, which is
consistent with this study. Within older landslides, the lateral and the toe boundaries were
especially difficult to distinguish compared to younger landslides. However, the scarp of the
landslides was easily detected within both young and older landslides and provides an indicator
of the presence of an older landslide. Even though there are limitations to LiDAR data it still
provides the best avenue to detect landslides under forested areas, which dominates this study

arca.
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6. CONCLUSION AND FUTURE WORK

Accurate prediction of landslide susceptibility is difficult due to the complex processes
associated with landslides. To address this problem this study demonstrates the application of an
ANN modeling method to predict landslide susceptibility using training and validation study
areas within the northern portion of CVNP. The production of the landslide inventory map was
the first step in the modeling of landslide susceptibility, which featured datasets derived from
LiDAR. The LiDAR-derived hillshade maps improve the recognition and identification of
landslides under highly forested areas and improved the quality and quantity of landslides
identified within the inventory map compared with API alone. Furthermore, the LIDAR dataset
allowed for the production of the topographic attributes which were narrowed down through the
ANN modeling process to the following six: slope, annual solar radiation, upslope drainage area,
wetness index, and plan and profile curvature. These LiDAR derivatives are a cost effective
method for the identification of landslides compared with traditional API, remote sensing, and

other landslide detection methods.

The production of the final model showed that the landslide susceptibility of this region
can be determined using this type of modeling, where such large datasets are incorporated. The
final ANN model classified the study area into a continuous degree of membership output which
is between 0 and 1. This range was then reclassified into five distinct classes which help to
better understand the landslide susceptibility of the study area. This can be examined by looking
at the high susceptibility class within the validation study area within Figure 11(b), where 42 %
of the landslides were correctly identified in only 1.6 % of the total area within the validation

study area. Finally, the ANN model has shown that regions where steep, lower solar radiated,
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slightly concave hillsides have a higher potential of a landslide to occur now or in the future than

gently sloping, sunny, convex hillsides.

There are some main aspects of the future work for this project. The first aspect should
be to produce a higher accuracy field investigation, where the landslide boundary within the
landslide inventory map is collected independently of the field investigation. The use of GPS
technology allows for the landslide boundary in the field to be collected and compared with the
LiDAR-derived landslide boundary within GIS software. Pixels from both boundaries can be
compared to produce a better understanding of how accurate the landslide inventory is.
Additionally, the use of different experts to decipher landslides within the LiDAR-derived
hillshade maps, as well as the use of high resolution imagery, and image fusion techniques can

also play a vital role in improving the quality of the landslide inventory map.

The field investigation should take place during the non-growing season, which allows
for the landslide features to be easily detected and the boundaries clearly marked so the direct
comparison can be made. A temporal landslide susceptibility study should take place comparing
this study with a future LiDAR survey completed by the state of Ohio or from private funding.
This will allow park official to monitor the changes in the landslide susceptibility of the study
area and help with discriminating how fast processes are changing within the CVNP. Lastly, this
model should be expanded to include the whole CVNP to produce a regional scaled landslide

susceptibility model.
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APPENDIX A: FIGURES
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Fig 1. The Artificial Neural Network architecture used within this study.



o Landslides

I:’ Training Area
I:] Validation Area
|:J CVNP Boundary

5

1 L L 1 |

L
Kilometers

Fig 2. Distribution of training and validation landslides over the CVNP.
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Fig 3. Landslide inventory from (a) LiDAR derived hillshade maps and (b) aerial photographs.
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Fig 4. Displaying (a) LiDAR derived hillshade maps (b) with high resolution aerial photographs
and (c) photographs taken in the field for a given landslide.



Fig 5. Predictor attributes derived from LiDAR data.
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Fig 9. A zoomed in image of the ANN produced landslide susceptibility. Examples from the
training and testing study areas are labeled a) and b) respectively.
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Fig 10. A close-up of landslide susceptibility associated with the training area.
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APPENDIX B: TABLES

Table 1. Landslides statistics from the training and testing study areas.
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Minimum Maximum Mean Total Percentage of
Landslide Landslide Landslide Landslide Total Area
Area (ha) Area (ha) Area (ha) Area (ha) (%)
Training | 4.03x 10~ 1.61 1.68x 107 13.95 0.75
Testing | 6.94x 10~ 2.35 1.57x 10" 16.81 0.80
Combined | 4.03 x 10 2.35 1.61x 10 30.82 0.78




Table 2. Clusters centers for the training and the validation study areas (C; is the
scarp based on the cluster center values of the highest slope, concave, dry region;
compared to C; which is the toe of the landslide. The toe contains cluster center
values which represent a shallow slop, convex, wet reagion.C, represent the body
of the landslides and contains cluster center values of a region dominated by
relatively steep slope, concave, high soil moisture).

Training Validation
Input data C1 C2 C3 C1 C2 Cs3
Slope 17.67  40.85 7452 23.03 35.49 65.86
Solar Radiation 70.77  63.67 48.48 71.02 68.13 54.61
Catchment 109.77 115.22 5857  52.6 284.53  54.13
Plane Curvature 0.4 -0.79  -0.91 1 -2.93 -0.44
Profile Curvature -0.04 -0.23 -0.22 -0.01 -0.62 -0.19

Wetness Index 5.86 5.2 4.11 5.22 6.48 4.17

56



57

Table 3. Effect of extreme values of ANN model parameters (Basheer and Hajmeer, 2000).

ANN Model Parameter

If Too High

If Too Low

Number of Training Pixels
per Class

Slower training, higher
likelihood of over training to
take place

ANN model not capable of
classifying the data, faster
training, lower accuracy

Number of Testing Pixels per
Class

Ability to validate ANN
classification capability

insufficient validation of
ANN classification
capability

Number of Hidden Layers
(1 to 3 layers)

More complex models, slower
training, more likelihood of
overfitting

One hidden layer provides
an simple model , less likely
of overfitting, faster training

Number of Hidden Layer
Nodes

Increases network complexity,
slows training, causes
overfitting to occur.

Unable to classify complex
data, produces a model with
lower accuracy, but faster
training

Learning Rate

Unstable model where no
learning occurs, weights
fluctuate widely

Slowing the rate of learning
and training of the model
and poor results

Momentum Factor

Speeds up training, increase
risk of exceed the solution
while training and, causes
unstable learning

Increases the risk of
entrapment in a local
minimum in the error
surface and, cause slower
training

Number of iterations

Overfitting occurs in unseen
data due to memorization of
training data.

Produces an ANN which is
unable to classify the data.
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Table 4. The result of the Pearson Correlation Analysis for all predictor attributes in landslide

prone arcas.

SLOPE Wetness | Annual Solar Upslope Plan Profile
Index Radiation Drainage Area | Curvature | Curvature
SLOPE -1
Wemess | 7403 | 1
Index
Annual
Solar -0.3555 | 0.6337 -1
Radiation
Upslope
Drainage | -0.6620 | 0.9358 -0.4669 -1
Area
Plan 0.1181 | -0.2426 |  -0.0464 -0.2484 1
Curvature
Profile | 0960 | -0.1583 | 01677 -0.0308 0.3840 1

Curvature
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